BASIC CONCEPT

If $F<J$ is definitely true, then $F_{_} T _R_{-} J$
a) $\leq,=, \leq$
b) $\leq,>$, $=$
c) \langle, \geq, \rangle
d) $<, \leq$, $=$
e) None of the above

If $B \leq X$ is definitely true, then $B_{-} H_{-} L_{-} X$
a) $\leq,<,=$
b) $\leq,=, \leq$
c) \geq, $=,>$
d) \geq, $<$, $=$
e) None of the above

Conclusion: $\mathbf{R}<\mathbf{Q}, \mathrm{M}>\mathrm{L}$

a) $R<T=M>Q>L$
b) $\mathbf{R}<\mathrm{M}>\mathrm{T}>$ Q $=L$
c) $L<M>Q>T>R$
d) $M>Q<L=T>R$
e) None of these

Conclusion: $\mathrm{H} \geq \mathrm{T}$

a) $\mathrm{G} \geq H>1 \geq T$
b) $\mathrm{H} \geq \mathrm{G}=\mathrm{T} \geq 1$
c) $\mathrm{G} \leq T=1>H$
d) $l \geq T=G>H$
e) None of the above

Which of the following symbols should replace the question mark?
If $\mathrm{P}<\mathrm{S}$ is true, $\mathrm{P} \leq \mathrm{Q} \leq \mathrm{R}$? $\mathrm{T}=\mathrm{S}$
a) \leq
b) \geq
c) $=$
d) $<$
e) $>$

If $\mathrm{A} \leq \mathrm{E}$ is true, $\mathrm{B}=\mathrm{A} \leq \mathrm{G}$? $\mathrm{H}=\mathrm{E}$
a) \geq
b) \leq
c) $=$
d) $<$
e) Either b or c

Which of the following is true if $\mathrm{K} \leq \mathrm{L}<\mathrm{M}=\mathrm{N}>\mathrm{O}$ is true?
a) $L \leq M$
b) $\mathrm{K}<0$
c) $\mathrm{O}<\mathrm{L}$
d) $\mathrm{K}<\mathrm{N}$
e) None of these

Which of the following symbols should replace the question mark in the given statement in order to make conclusion 'S > O' definitely true? S $\geq \mathrm{I}$? $\mathrm{V}=\mathrm{O} \geq \mathrm{B}>\mathrm{E}$
a) $=$
b) \geq
c) \leq
d) $<$
e) None of these

Which statement should be placed in the blank spaces respectively(from left to right)? If $\mathrm{Z}<\mathrm{Y}$ is true, then __<_____
a) $X Z T Y$
b) $X Z Y T$
c) $X Y$ T Z
d) $Z X T Y$
e) Y X Z T

In which of the following expressions will the expression ' Y < R ' be definitely true?
a) $\mathrm{Y} \geq \mathrm{P}=\mathrm{U}=\mathrm{R}$
b) $\mathrm{Y}<$ U $>$ R $>$ P
c) $\mathrm{Y} \leq$ U $=$ P $<$ R
d) U $>$ Y \geq R $<$ P
e) R $>\mathbf{U}=$ P $<\mathbf{Y}$

In the following question, how to place the symbols so that both the conditions, $\mathbf{R}>\mathbf{G}$ and $\mathrm{N}<\mathrm{F}$, definitely hold true when all the expressions are considered together?
$R_{\text {_ }} \mathrm{E}>\mathrm{W}<\mathrm{X} \leq \mathrm{F} ; \mathrm{W}_{\text {_ }} \mathrm{S}>\mathrm{G} ; \mathrm{X} \geq \mathrm{U}$ _ N
a) $>,=, \geq$
b) $=$, <, <
c) $>, \geq,<$
d) $=, \geq,>$
e) $\leq,=,>$

What will come in the place of question mark (?) in the given statement if $4>8$ and $9 \geq 6$ is definitely true?
$4 \geq 5>9$ (?) $8 \geq 7=6$
a) $=$
b) \geq
c) $>$
d) \leq
e) Either = or \geq

What will come in the place of question mark (?) in the given statement if $4>8$ is definitely true?
$2 \geq 3=4 \geq 5$ (?) $6=7 \geq 8$
a) $=$
b) \geq
c) $>$
d) \leq
e) $<$

Which of the following symbols should replace the sign respectively in order to complete the given expression in such a manner that "C > D" definitely holds false?
L < O > C $\leq \mathrm{K} @ \mathrm{E}$ * $\mathrm{D}>\mathrm{N}$
a) \geq, $>$
b) \neq, $<$
c) $<$, $<$
d) $=, \leq$
e) \leq, \leq

Which of the following symbols should replace the sign respectively in order to complete the given expression in such a manner that " $\mathbf{Z}>\mathbf{S}$ " definitely holds True?
$\mathrm{C} \leq \mathrm{Z} \geq \mathrm{R} \geq \mathrm{K} \# \mathrm{Y} \geq \mathrm{S}$
a) \geq
b) $<$
c) $>$
d) $=$
e) \leq

Which of the following would replace @ and \& in the following expression so that ' $\mathrm{O}>\mathrm{N}$ ' is definitely true?
L = $\mathrm{O}>\mathrm{W} @ \mathrm{M} \leq \mathrm{K} ; \mathrm{M}>\mathrm{F} \& \mathrm{C} \geq \mathrm{N}$
a) $<$, $=$
b) $>, \leq$
c) $=, \leq$
d) \geq, $<$
e) \geq, $>$

In which of the following expressions will the expression ' Y < R ' be definitely true?
a) $\mathrm{Y} \geq \mathrm{P}=\mathrm{U}=\mathrm{R}$
b) $\mathrm{Y}<$ U $>$ R $>$ P
c) $\mathrm{Y} \leq$ U $=$ P $<$ R
d) U $>$ Y \geq R $<$ P
e) R $>\mathbf{U}=$ P $<\mathbf{Y}$

In the following question, how to place the symbols so that both the conditions, $\mathbf{R}>\mathbf{G}$ and $\mathrm{N}<\mathrm{F}$, definitely hold true when all the expressions are considered together?
R__E $>\mathrm{W}<\mathrm{X} \leq \mathrm{F} ; \mathrm{W} _\mathrm{S}>\mathrm{G} ; \mathrm{X} \geq \mathrm{U}$ \qquad N
a) $>,=, \geq$
b) $=$, <, <
c) $>, \geq,<$
d) $=, \geq,>$
e) $\leq,=,>$

What will come in the place of question mark (?) in the given statement if $4>8$ and $9 \geq 6$ is definitely true?
$4 \geq 5>9$ (?) $8 \geq 7=6$
a) $=$
b) \geq
c) $>$
d) \leq
e) Either = or \geq

What will come in the place of question mark (?) in the given statement if $4>8$ is definitely true?
$2 \geq 3=4 \geq 5$ (?) $6=7 \geq 8$
a) $=$
b) \geq
c) $>$
d) \leq
e) $<$
$P+Q$ means P is neither smaller nor greater than \mathbf{Q}.
$P \times Q$ means P is neither equal to nor smaller than Q.
P ? Q means P is neither greater than nor equal to Q .
P @ Q means P is either greater than or equal to Q.
P \$ Q means P either less than or equal to Q.

1	\times
2	$@$
0	+
-1	$?$
-2	$\$$

$P+Q$ means P is neither smaller nor greater than Q.
$P \times Q$ means P is neither equal to nor smaller than Q.
P ? Q means P is neither greater than nor equal to Q.
P @ Q means P is either greater than or equal to Q .
P \$ Q means P either less than or equal to Q.
Statements: A + B, B \$ C, C ? A Conclusions:
l. C \$ A
II. B+C
a) if only conclusion I is true;
b) if only conclusion II is true;
c) if either I or II is true:
d) if neither I nor II is true; and
e) if both I and II are true.

1	\times
2	$@$
0	+
-1	$?$
-2	$\$$

$P+Q$ means P is neither smaller nor greater than \mathbf{Q}.
$P \times Q$ means P is neither equal to nor smaller than Q. P ? Q means P is neither greater than nor equal to Q . P @ Q means P is either greater than or equal to Q . P \$ Q means P either less than or equal to Q.

Statements: Y @ Z, Z × Q, Q \$ P
Conclusions:
I. Y ? P
II. Y @ P
a) if only conclusion I is true;
b) if only conclusion II is true;
c) if either I or II is true:
d) if neither I nor II is true; and
e) if both I and II are true.

1	x
2	$@$
0	+
-1	$?$
-2	$\$$

$P+Q$ means P is neither smaller nor greater than \mathbf{Q}.
$P \times Q$ means P is neither equal to nor smaller than Q.
P ? Q means P is neither greater than nor equal to Q .
P @ Q means P is either greater than or equal to Q .
P \$ Q means P either less than or equal to Q.
Statements: E × F, F @ L, L+ N
Conclusions:
l. $N+F$
II. E×L
a) if only conclusion I is true;
b) if only conclusion II is true;
c) if either I or II is true:
d) if neither I nor II is true; and
e) if both I and II are true.

1	\times
2	$@$
0	+
-1	$?$
-2	$\$$

$\mathrm{P}+\mathrm{Q}$ means P is neither smaller nor greater than Q .
$P \times Q$ means P is neither equal to nor smaller than Q.
P ? Q means P is neither greater than nor equal to Q .
P @ Q means P is either greater than or equal to Q.
P \$ Q means P either less than or equal to Q.
Statements: H @ J. J ? K, K × M
Conclusions:
I. H @ M
II. M \times J
a) if only conclusion I is true;
b) if only conclusion II is true;
c) if either I or II is true:
d) if neither I nor II is true; and
e) if both I and II are true.

1	x
2	$@$
0	+
-1	$?$
-2	$\$$

$P+Q$ means P is neither smaller nor greater than \mathbf{Q}.
$P \times Q$ means P is neither equal to nor smaller than Q.
P ? Q means P is neither greater than nor equal to Q.
P @ Q means P is either greater than or equal to Q .
P \$ Q means P either less than or equal to Q.

Statements: M @ T, T + V, V ? E

Conclusions:
l. V + M
II. V ? M
a) if only conclusion I is true;
b) if only conclusion II is true;
c) if either I or II is true:
d) if neither I nor II is true; and
e) if both I and II are true.

1	x
2	$@$
0	+
-1	$?$
-2	$\$$

$P+Q$ means P is neither smaller nor greater than \mathbf{Q}.
$P \times Q$ means P is neither equal to nor smaller than Q.
P ? Q means P is neither greater than nor equal to Q .
P @ Q means P is either greater than or equal to Q .
P \$ Q means P either less than or equal to Q.
Statements: $\mathbf{P} \$ \mathbf{Q}, \mathbf{Q} \times \mathbf{R}, \mathrm{P}+\mathrm{R}$
Conclusions:
I. $Q \times P$
II. P ? Q
a) if only conclusion I is true;
b) if only conclusion II is true;
c) if either I or II is true:
d) if neither I nor II is true; and
e) if both I and II are true.

1	\times
2	$@$
0	+
-1	$?$
-2	$\$$

P @ Q means P is greater than Q.
$\mathbf{P}+\mathbf{Q}$ means \mathbf{P} is either greater than or equal to \mathbf{Q}.
\mathbf{P} \# Q means \mathbf{P} is smaller than \mathbf{Q}
\mathbf{P} \% Q means \mathbf{P} is either smaller than or equal to \mathbf{Q}.
$\mathbf{P} \$ \mathbf{Q}$ means \mathbf{P} is equal to \mathbf{Q}
Statements: T \$ G, K @ P, M \# T, P + M Conclusions:
I. K @ T
II. G \$ P
III. T @ P
a) Only I and II follows
b) Only II and III follow
c) Only I and III follow
d) None follows
e) All follows

1	$@$
2	+
0	$\$$
-1	$\#$
-2	$\%$

P @ Q means P is greater than \mathbf{Q}.
$\mathbf{P}+\mathbf{Q}$ means \mathbf{P} is either greater than or equal to \mathbf{Q}.
\mathbf{P} \# Q means \mathbf{P} is smaller than \mathbf{Q}
\mathbf{P} \% Q means \mathbf{P} is either smaller than or equal to \mathbf{Q}.
$\mathbf{P} \$ \mathbf{Q}$ means \mathbf{P} is equal to \mathbf{Q}
Statements: G \$ E, D \# K, E \# S, K \% G Conclusions:
I. S @ D
II. D\# E
III. K + E
a) Only I and II follows
b) Only II and III follow
c) Only I and III follow
d) None follows
e) None of these

1	$@$
2	+
0	$\$$
-1	$\#$
-2	$\%$

P @ Q means P is greater than \mathbf{Q}.
$\mathbf{P}+\mathbf{Q}$ means \mathbf{P} is either greater than or equal to \mathbf{Q}.
\mathbf{P} \# Q means \mathbf{P} is smaller than \mathbf{Q}
\mathbf{P} \% Q means \mathbf{P} is either smaller than or equal to \mathbf{Q}.
$\mathbf{P} \$ \mathbf{Q}$ means \mathbf{P} is equal to \mathbf{Q}
Statements: R + N, S \% B, A @ R, B \$ A Conclusions:
I. S \$ N
II. A @ N
III. A + S
a) None follows
b) Only I follow
c) Only II follows
d) Only III follows
e) Only II\& III follows

1	$@$
2	+
0	$\$$
-1	$\#$
-2	$\%$

P @ Q means P is greater than Q.
$\mathbf{P}+\mathbf{Q}$ means \mathbf{P} is either greater than or equal to \mathbf{Q}.
\mathbf{P} \# Q means \mathbf{P} is smaller than \mathbf{Q}
\mathbf{P} \% Q means \mathbf{P} is either smaller than or equal to \mathbf{Q}.
$\mathbf{P} \$ \mathbf{Q}$ means \mathbf{P} is equal to \mathbf{Q}
Statements: W @ S, K \% Z, U + W, S \$ K Conclusions:
I. U @ K
II. Z @ S
III. W @ Z
a) Only II follows
b) Only I and III follow
c) Only III follows
d) Only I follow
e) None of these

1	$@$
2	+
0	$\$$
-1	$\#$
-2	$\%$

$$
\begin{aligned}
& \text { yhanh } \\
& =\text { Howt }
\end{aligned}
$$

